Let $s, s_n\in\mathbb{R}$ and $\hat{s}_n$ be a random variable.
I have two concentration inequalities:
$$\mathbb{P}(\vert \hat{s}_n-s\vert > x)\leq a(n,x)$$ for all $n\geq1$ and $x>0$;
and
$$\mathbb{P}(\vert \hat{s}_n-s_n\vert > x)\leq b(n,x)$$ for all $n\geq1$ and $x>0$.
Is there a way to bound $\vert s_n – s\vert$?