How to read data from XML like string

I have a response from an api which is xml but doesn’t look properly formatted, how can I format this and get each element. I have tried using simplexml_load_string() but it saves the data and remove the <xml> opening tag. Below is the response I get from the api. <?xml version=”1.0″ encoding=”utf-8″?><string xmlns=”http://hts.org/”>&lt;Info&gt;&lt;Status&gt;1&lt;/Status&gt;&lt;ChasisNo&gt;dfrtdf4543&lt;/ChasisNo&gt;&lt;Color&gt;Black&lt;/Color&gt;&lt;PolicyNo&gt;POL\CR\2014\0000&lt;/PolicyNo&gt;&lt;Model&gt;Hiace&lt;/Model&gt;&lt;Name&gt;Tawakalitu&lt;/Name&gt;&lt;NewRegistrationNo&gt;HB90IKJ&lt;/NewRegistrationNo&gt;&lt;RegistrationNo&gt;HB90IKJ&lt;/RegistrationNo&gt;&lt;Model&gt;Hiace&lt;/Model&gt;&lt;CarMake&gt;Toyota&lt;/CarMake&gt;&lt;VehicleType&gt;hatchback&lt;/VehicleType&gt;&lt;IssueDate&gt;31 DECEMBER 2015&lt;/IssueDate&gt;&lt;ExpirationDate&gt;30…

Details

An error occurred (InvalidSubnet) when calling the CreateLoadBalancer operation: The subnet ID ‘MythicalMysfitsCoreStack:PublicSubnetOne’ is not valid

Following the aws tutorial to deploy a dynamic website with Fargate: In the step when we are going to create the Load Balancer with the command: aws elbv2 create-load-balancer –name mysfits-nlb –scheme internet-facing –type network –subnets MythicalMysfitsCoreStack:PublicSubnetOne MythicalMysfitsCoreStack:PublicSubnetTwo > ~/environment/nlb-output.json I get the error: An error occurred (InvalidSubnet) when calling the CreateLoadBalancer operation: The subnet…

Details

Using a logistic regression model calculated, create a classifier based on a suitable cut-off value in R

I have created a logistic regression model using the built in iris dataset in R… # Includes iris dataset. library(datasets) # Dummy variable to predict. iris$dummy.virginica.iris <- 0 iris$dummy.virginica.iris[iris$Species == ‘virginica’] <- 1 iris$dummy.virginica.iris # Logistic regression model. glmfit<-glm(dummy.virginica.iris ~ Petal.Width, data = iris, family = ‘binomial’) summary(glmfit) How would I create a classifier based…

Details